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Quantum MV-Algebras and Commutativity

Roberto Giuntini1

Received July 4, 1997

We introduce a notion of commutativity in quantum MV-algebras (QMV-algebras)
and we investigate the corresponding structure of the center. It turns out that the
center of a QMV-algebra is a multivalued algebra (MV-algebra). Finally, we
prove that the center of the QMV-algebra of all effects on a Hilbert space
is irreducible.

1. INTRODUCTION

Quantum MV-algebras (QMV-algebras) were introduced in Giunti

(1996) as a non-lattice-theoretic generalization of MV-algebras (multivalued

algebras; Chang, 1957, 1958) and as an algebraic generalization of effects
on a Hilbert space. An effect is a positive (and therefore self-adjoint) linear

operator dominated by the identity on a Hilbert space *. The spectrum of

an effect is contained in the real interval [0,1]. In the unsharp approach to
quantum mechanics, effects can be considered as the mathematical representa-

tives of ª unsharp propertiesº of a quantum physical system in that their

possible values are contained in [0,1]. In the standard approach to quantum

mechanics instead, the mathematical interpretation of the notion of property

is given by projections on *. Differently from effects, the spectrum of any

projection is contained in the two-element set {0, 1}. The class of all projec-
tions determines an orthomodular lattice (Kalmbach, 1983), whereas the class

of all effects determines a QMV-algebra (Giuntini, 1995b) which is not

a lattice.

Both QMV and MV-algebras allow us to to define two operations ( ( ,

ù ù ), which can be interpreted, from a logical point of view, as the connective
ª and.º Differently from MV-algebras, in QMV-algebras the operation ù ù is
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not generally commutative. MV-algebras are precisely those QMV-algebras

where ù ù is commutative. Therefore it seems to be interesting to define an

appropriate relation of commutativity (and a corresponding notion of center)
for QMV-algebras, which turns out to be universal in the MV-algebra case.

As we will see in Section 3, such a relation generalizes the commutativity

(or compatibility) relation definable in every orthomodular lattice.

2. BASIC PROPERTIES OF QMV-ALGEBRAS

We assume that the reader is familiar with Giuntini (1996), although,

for convenience, we present most of the pertinent basic definitions and proper-

ties of QMV-algebras.

Definition 2.1. A quantum MV-algebra (QMV-algebra ) is a structure }
5 (M, % ; *, 1, 0), consisting of a nonempty set M, two special elements 1,
0 of M, a binary operation % on M, and a 1-ary operation * on M. The

following axioms are required to hold " a,b P M (where a ( b : 5 (a* %
b*)*, a ù ù b : 5 (a % b*) ( a, a ø ø b : 5 (a ( b*) % b):

(QMV1) (a % b) % c 5 a % (b % c)

(QMV2) a % b 5 b % a
(QMV3) a % a* 5 1
(QMV4) a % 0 5 a
(QMV5) a % 1 5 1
(QMV6) a** 5 a
(QMV7) a ø ø (b ù ù a) 5 a
(QMV8) (a ù ù b) ù ù c 5 (a ù ù b) ù ù (b ù ù c)

(QMV9) a % (b ù ù (a % c)*) 5 (a % b) ù ù (a % (a % c)*)

(QMV10) a % (a* ù ù b) 5 a % b
(QMV11) (a* % b) ø ø (b* % a) 5 1

We assume ( to be more binding than % .

Definition 2.2. An MV-algebra is a QMV-algebra } s.t. " a, b P M

a ù ù b 5 b ù ù a

Lemma 2.1. Let } be a QMV-algebra. The following conditions are

equivalent:

(i) } is an MV-algebra.

(ii) " a,b P M: If a* % b 5 1, then a d b.

Example 2.1 (Standard QMV-algebra). Let E (*)be the class of all effects

of a Hilbert space *. E (*) coincides with the class of all bounded linear

operators between 0 and 1, where 0 and 1 are the null and the identity
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operator, respectively. The operations % and * are defined as follows, for

any E, F P E (*):

E % F : 5 H E 1 F if E 1 F P E(*)

1 otherwise

where 1 is the usual operator-sum. We have

E* : 5 1 2 E

The structure %(*) : 5 (E (*), % , *, 1, 0) is a QMV-algebra, called standard
QMV-algebra (Giuntini, 1995a). The structure %(*), however, is not an MV-

algebra (Giuntini, 1996).

Example 2.2 (Standard MV-algebra). Let [0,1] # R. For all a,b P
[0,1], let

a % b : 5 Min{a 1 b, 1} (truncated sum)

and

a* : 5 1 2 a

The structure }[0,1] 5 ([0,1], % , *, 1, 0) is an MV-algebra, called standard
MV-algebra.

Let } be a QMV-algebra. We can define the following relation:

a d b iff a 5 a ù ù b,

It turns out that the structure (M, d , *, 1, 0) is an involutive bounded

poset (i.e., a bounded poset with an order-reversing involution), which is not

generally a lattice. Further, the following De Morgan-type laws hold:

(a ù ù b)* 5 a ø ø b*

(a ø ø b)* 5 a* ù ù b*

If } is an MV-algebra, then the structure (M, d , *, 1, 0) is a distributive de

Morgan lattice (Chang, 1957), where " a,b P M, the inf (sup) of a and b is

a ù ù b (a ø ø b). In the standard MV-algebra }[0, 1], the relation d coincides

with the restriction to [0, 1] of the usual order of R. Consequently, }[0, 1] is

linear (totally ordered ): " a, b P [0,1]: a d b or b d a.
It turns out that a ( b 5 Max{a 1 b 2 1, 0}, a ù ù b 5 Min{a, b},

and a ø ø b 5 Max {a,b}.

Lemma 2.2 (Cancellation law). Let } be a QMV-algebra. For any a,
b, c P M: if a % c 5 b % c, a d c*, and b d c*, then a 5 b.
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Lemma 2.3. Let } be a QMV-algebra. The following properties hold:

(i) If a d b, then b* d a*.

(ii) a d b iff b 5 b ø ø a 5 a ø ø b.
(iii) a ù ù (b ø ø a) 5 a.

Lemma 2.4. Let } be a QMV-algebra. The following properties hold:
(i) If a d b, then " c P M: a ù ù c d b ù ù c (weak monotony of ù ù ).

(ii) If a d b, then " c P M: a ø ø c d b ø ø c (weak monotony of ø ø ).

(iii) a ù ù b d b and b d a ø ø b.

It should be noticed that, in general, a ù ù b d ¤ a, a d ¤ a ø ø b, and a ù ù
b d ¤ b ø ø a.

Lemma 2.5 (Monotony of % and ( ). Let } be a QMV-algebra. The

following properties hold:

(i) If a d b, then " c P M: a % c d b % c.
(ii) If a d b, then " c P M: a ( c d b ( c.
(iii) If a d b and c d d, then a % c d b % d.
(iv) a d b and c d d, then a ( c d b ( d.

Lemma 2.6. Let } be a QMV-algebra. The following properties hold:

(i) a ( b d a.
(ii) a d a % b.
(iii) a ( b d a ù ù b, a ( b d b ù ù a.
(iv) a ø ø b d a % b, b ø ø a d a % b.

Definition 2.3. A quasilinear QMV-algebra is a QMV-algebra } 5 (M,
% , *, 1, 0) that satisfies the following condition " a, b P M:

(QL) a d ¤ b Þ a ù ù b 5 b

It is easy to see that the standard QMV-algebra e (H ) of all effects on a Hilbert

space * (see Example 2.1) is quasilinear.

Lemma 2.7. Let } be a QMV-algebra. The following conditions are

equivalent:

(i) } is quasilinear.

(ii) " a,b P M: a d ¤ b Þ a ù ù b 5 b.
(iii) " a,b,c P M: if a % c 5 b % c Þ 1, then a 5 b.

It should be noticed that any MV-algebra is quasilinear iff it is totally

ordered.

3. THE CENTER OF A QMV-ALGEBRA

MV-algebras can be characterized as those QMV-algebras where the

operation ù ù is commutative. Therefore, it is quite natural to define a relation
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of commutativity for QMV-algebras, which turns out to be universal for MV-

algebras. The notion of center can be defined in the usual manner. The main

result of this section is that the center of a QMV-algebra } is an MV-
subalgebra of } and therefore a distributive De Morgan lattice. We will

freely use De Morgan laws and Lemmas 2.1±2.7 throughout this section.

Lemma 3.1. Let } be a QMV-algebra. Then, " a, b P M

a 5 a ( b* % (b ù ù a).

Proof. a ( b* % (b ù ù a) 5 a ( b* % (b % a*) ( a 5 a ( b* % (b*

( a)* ( a 5 a ø ø (b* ( a) 5 a, since b* ( a d a. n

Definition 3.1. Let } be a QMV-algebra and let a, b P M. We say that

a commutes with b (aCb) iff a ù ù b 5 b ù ù a.

By definition, a QMV-algebra } is an MV-algebra iff " a, b P M: aCb.

Lemma 3.2. Let } be a QMV-algebra. The following conditions are

equivalent " ,a,b P M:
(i) aCb.
(ii) a 5 a ( b* % (a ù ù b).

Proof. (i) Þ (ii) The proof follows from Lemma 3.1.

(ii) Þ (i) Suppose a 5 a ( b* % (a ù ù b). By Lemma 3.1, a 5 a (
b* % (b ù ù a). Now, a ( b* d b d a* ( b % b* 5 (a ù ù b) and a ( b*

d b* ( a % a* 5 (b ù ù a)*. Thus, by the cancellation law (Lemma 2.2),

a ù ù b 5 b ù ù a. n

As proved in Giuntini (1996) every orthomodular lattice + 5 (L, u , t ,

8, 1, 0) (where u ( t ) is the lattice-theoretic operations of inf (sup) and 8 is

the orthocomplement) can be thought of as a QMV-algebra, defining % 5
t and * 5 8. It turns out that " a, b P L: aCb iff a 5 (a u b*) t (a u b)

iff $ a1, b1, c P L s.t. a1 5 a1 u c8, b1 5 b1 u c8, a 5 a1 t c, and b 5
b1 t c. Consequently, the relation C coincides with the usual notion of
commutativity in orthomodular lattice theory (Kalnbach, 1983).

Lemma 3.3. Let } be a QMV-algebra. The following properties hold

" a, b P M:
(i) The relation C is reflexive and symmetric.

(ii) If a d b or b d a, then aCb.
(iii) If aCb, then d*Cb*.

Proof. The proof of (i)±(ii) is straightforward.

(iii) Suppose aCb; we have to prove aÁ * ù ù bÁ * 5 bÁ * ù ù aÁ *, or equivalently

a ø ø b 5 b ø ø a. By Lemma 3.1, b 5 b ( a* % a ù ù b. By hypothesis and Lemma
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3.1, a 5 a ( b* % a ù ù b. Thus, a ø ø b 5 a ( b* % b 5 a ( b * % b (
a* % a ù ù b 5 b ( aÁ * % a 5 b ø ø a. n

Lemma 3.4. Let } be a QMV algebra. Then, " a, b, c P M: (c ù ù a)*

% (b ù ù a) 5 (c ù ù a)* % b.

Proof :

(c ù ù a)* % (b ù ù a) 5 (c* ø ø a*) % (b ù ù a)

5 (c* ( a) % a* % (b ù ù a)

5 (c* ( a) % a* % b (QMV9)

5 (c* ø ø a*) % b

5 (c ù ù a)* % b

Lemma 3.5. Let } be a QMV-algebra. " a, b, c, d P M: if a d b, c d
d, bCc, and bCd, then a ø ø c d b ø ø d.

Proof. By Lemma 2.4(ii), a ø ø c d b ø ø c and c ø ø b d d ø ø b. By
Lemma 3.3(iii), b*Cd* and b*Cd*. Hence: b ø ø c 5 c ø ø b and d ø ø b 5 b
ø ø d. Thus, a ø ø c d b ø ø d. n

Lemma 3.6. Let } be a QMV-algebra. " a, b, c P M: if aCb and aCc,

then (a ù ù b) ù ù c 5 b ù ù (a ù ù c).

Proof :

(a ù ù b) ù ù c 5 (b ù ù a) ù ù c (aCb)

5 (b ù ù a) ù ù (a ù ù c) (QMV8)

5 ((b ù ù a) % (a ù ù c)*) ( (a ù ù c)

5 ((b ù ù a) % (c ù ù a)*) ( (c ù ù a) (aCc)

5 ((c ù ù a)* % b) ( (c ù ù a) (Lemma 3.4)

5 b ù ù (c ù ù a)

5 b ù ù (a ù ù c) (aCc)

Lemma 3.7. Let } a QMV-algebra. " a, b, c P M: if aCb, aCc, and

bCc, then (a ù ù b) ù ù c 5 c ù ù (a ù ù b).

Proof :

(a ù ù b) ù ù c 5 b ù ù (a ù ù c) (Lemma 3.6)

5 b ù ù (c ù ù a) (aCc)
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5 (c ù ù b) ù ù a (Lemma 3.6)

5 (b ù ù c) ù ù a (bCc)

5 c ù ù (b ù ù a) (Lemma 3.6)

5 c ù ù (a ù ù b) (aCb)

Lemma 3.8. Let } be a QMV-algebra. The following property holds

" a, b, c P M s.t. aCc* and bCc:

a % (b ù ù c) 5 (a % b) ù ù (a % c)

Proof. First, we prove a % (b ù ù c) d (a % b) ù ù (a % c).

Let a : 5 (a % (b ù ù c)) ù ù ((a % b) ù ù (a % c)). We want to show that

a 5 a % (b ù ù c):

a 5 (a % (b ù ù c)) % ((a % b)* ø ø (a % c)*) ( ((a % b) % (a % c)*)

( (a % c)

5 (a % (b ù ù c) % (a % b)* ( (a % c) % (a % c)*) ( ((a % b)

% (a % c)*) ( (a % c)

5 ((a % (b ù ù c) % (a % c)*) ù ù ((a % b) % (a % c)*)) ( (a % c)

5 ((a % (c ù ù b) % (a % c)*) ù ù ((a % b) % (a % c)*)) ( (a % c) (bCc)

5 (a % (b ù ù c) % (a % c)*) ( (a % c) (Lemma 2.4(iii)±2.5(i))

5 (a % (b ù ù c)) ù ù (a % c)

5 a % (b ù ù c) (Lemma 2.4(iii)±2.5(i))

Since a % (b ù ù c) d (a % b) ù ù (a % c), in order to prove (a % b) ù ù (a
% c) d a % (b ù ù c) it suffices to show

((a % b) ù ù (a % c))* % a % (b ù ù c) 5 1

Let b : 5 ((a % b) ù ù (a % c))* % a % (b ù ù c). Then

b 5 a % (b ù ù c) % ((a % b)* ø ø (a % c)*)

5 a % (b ù ù c) % (a* ( b*) ( (a % c) % (a* ( c*)

5 (c* ø ø a) % (b ù ù c) % (aÁ * ( b*) ( (a % c)

5 (c* ø ø a) % (b ù ù c) % b* ( (c ù ù a*)

5 b* ( (a* ù ù c) % (a* ù ù c)* % (b ù ù c) (aCc*)

5 b* ( (a* ù ù c) % (a* ù ù c)* % b (Lemma 3.4)

5 1
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Definition 3.2. Let } be a QMV-algebra. The center of } (](M )) is

the set {a P M | " b P M: aCb}.

Clearly, ](M ) Þ 0¤, since 0, 1 P ](M ).

Theorem 3.1. Let } be a QMV-algebra. " a, b P ](M ) s.t. a d b*: a
% b P ](M ).

Proof. Suppose a, b P ](M ). By Lemma 3.3(iii), we have a*, b* P
](M ). Let c be any element of M. By Lemma 3.1,

c 5 c ( a* % (c ù ù a)

Again, by Lemma 3.1 and hypothesis

c ( a* 5 (c ( a*) ( b* % ((c ( a*) ù ù b)

and

c ù ù a 5 (c ù ù a) ( b % ((c ù ù a) ù ù b*)

Thus,

c 5 (c ( a*) ( b* % ((c ( a*) ù ù b) % (c ù ù a) ( b % ((c ù ù a) ù ù b*)

By hypothesis, a d b*; hence: a ( b 5 0 and a ù ù b* 5 b*. Therefore,
(c ù ù a) ( b 5 (c % a*) ( a ( b 5 0. Further, c ù ù a d a d b*, so that

(c ù ù a) ù ù b* 5 c ù ù a. Thus,

c 5 (c ( a*) ( b* % ((c ( a*) ù ù b) % (c ù ù a)

5 (c ( a*) ( b* % (((c ù ù a) % (c ( a*)) ù ù ((c ù ù a) % b)) (Lemma 3.8)

5 (c ( a*) ( b* % (((a ù ù c) % (c ( a*)) ù ù ((c ù ù a) % b)) (aCc)

5 (c ( a*) ( b* % (((a % c*) ( c % (c* % a)*) ù ù ((c ù ù a) % b))

5 (c ( a*) ( b* % ((c ø ø (c* % a)*) ù ù ((c ù ù a) % b))

5 (c ( a*) ( b* % (c ù ù ((c ù ù a) % b)) (c ( a* d c)

5 (c ( a*) ( b* % (c ù ù ((b % c) ù ù (a % b))) (Lemma 3.8)

5 (c ( a*) ( b* % (((b % c) ù ù c) ù ù (a % b)) (Lemma 3.6)

5 (c ( a*) ( b* % (c ù ù (a % b))

5 c ( (a % b)* % (c ù ù (a % b))

Thus, by Lemma 3.2, (a % b)Cc. n

Theorem 3.2 (Main Theorem). Let } be a QMV-algebra. The structure

](}) 5 (](M ), % , *, 1, 0) is an MV-subalgebra of }. Further, " a, b P
](M ), the inf (sup) of a, b in ](}) coincides with the inf (sup) of a, b in
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}, which is equal to a ù ù b (a ø ø b). Thus, (](M ), ù ù , ø ø , *, 1, 0) is a De

Morgan distributive sublattice of the involutive bounded poset (M, d , *, 1, 0).

Proof. By Lemma 3.3(ii), ](M ) is closed under the operation * and

contains 1, 0. Thus, in order to prove that ](}) is an MV-subalgebra of }
it is sufficient to show that ](M ) is closed under % . Suppose a,b P ](M ).
By (QMV9), we have a % b 5 a % (b ù ù a*). Since ](M ) is closed under

ù ù and * and a d b* ø ø a 5 (b ù ù a*)*, it follows by Theorem 3.1 that a %
b P ](M ). Thus ](}) is an MV-subalgebra of }.

Let a,b P ](M ). By commutativity, a ù ù b d a, b. Let c be any element

of } s.t. c d a, b. By Lemma 2.4(iii), c d a ù ù b. Thus, a ù ù b is the inf
of a, b in } and consequently in ](M ). By Chang (1957) we obtain that

(](M ), ù ù , ø ø , *, 1, 0) is a De Morgan distributive sublattice of the involutive

bounded poset (M, d , *, 1, 0). n

Corollary 3.1. Let + 5 (L, u , t , 8, 1, 0) be an orthomodular lattice.
Let % : 5 t and * 5 1. The center of + (understood as a QMV-algebra) is

a Boolean subalgebra of + and coincides with the center of + (understood

as a lattice).

Corollary 3.2. Let } be a quasilinear QMV-algebra. The center of }
is a totally ordered MV-algebra.

Theorem 3.3. Let %(*) be the standard QMV-algebra (see Example 2.1).

The center of %(*) is irreducible, i.e., ](%(*)) 5 {0, 1}.

Proof. Since %(*) is quasilinear, by Corollary 3.1, ](%(*)) is a totally

ordered MV-subalgebra of %(*). Suppose E P E (*). We want to show that

E P {0, 1}. Let P be any projection operator in E (*). Two cases are possible:

(i) E d P; (ii) P d E.
(i) Let E d P. By Giuntini and Greuling (1989), we have E 5 EP 5

PE. If E d P*, then, again by Giuntini and Greuling and Greuling (1989),

E 5 EP* 5 P*E. Hence: E 5 EP 5 EP* P 5 0 If E d ¤ P*, then P* d E
and therefore, by transitivity, P* d P. Hence: P 5 1.

The proof of case (ii) is similar to the proof of case (i).
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